A DTC Niche Plexus Surrounds the Germline Stem Cell Pool in Caenorhabditis elegans
نویسندگان
چکیده
The mesenchymal distal tip cell (DTC) provides the niche for Caenorhabditis elegans germline stem cells (GSCs). The DTC has a complex cellular architecture: its cell body caps the distal gonadal end and contacts germ cells extensively, but it also includes multiple cellular processes that extend along the germline tube and intercalate between germ cells. Here we use the lag-2 DTC promoter to drive expression of myristoylated GFP, which highlights DTC membranes and permits a more detailed view of DTC architecture. We find that short processes intercalating between germ cells contact more germ cells than seen previously. We define this region of extensive niche contact with germ cells as the DTC plexus. The extent of the DTC plexus corresponds well with the previously determined extent of the GSC pool. Moreover, expression of a differentiation marker increases as germ cells move out of the plexus. Maintenance of this DTC plexus depends on the presence of undifferentiated germ cells, suggesting that germ cell state can influence niche architecture. The roles of this DTC architecture remain an open question. One idea is that the DTC plexus delivers Notch signaling to the cluster of germ cells comprising the GSC pool; another idea is that the plexus anchors GSCs at the distal end.
منابع مشابه
Scratching the niche that controls Caenorhabditis elegans germline stem cells.
The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond ...
متن کاملIdentification of regulators of germ stem cell enwrapment by its niche in C. elegans.
Many stem cell niches contain support cells that increase contact with stem cells by enwrapping them in cellular processes. One example is the germ stem cell niche in C. elegans, which is composed of a single niche cell termed the distal tip cell (DTC) that extends cellular processes, constructing an elaborate plexus that enwraps germ stem cells. To identify genes required for plexus formation ...
متن کاملControls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans.
The Caenorhabditis elegans germ line provides an exceptional model for analysis of the molecular controls governing stem cell maintenance, the cell cycle transition from mitosis to meiosis, and the choice of sexual identity-sperm or oocyte. Germline stem cells are maintained in an undifferentiated state within a well-defined niche formed by a single somatic cell, the distal tip cell (DTC). In b...
متن کاملSensory Regulation of the C. elegans Germline through TGF-β-Dependent Signaling in the Niche
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumul...
متن کاملC. elegans germline stem cells and their niche
C. elegans germline stem cells are a particularly simple system for analysis of stem cell regulation. Their well-defined mesenchymal niche consists of a single cell, the Distal Tip Cell, which uses Notch signaling to maintain a pool of germline stem cells. Downstream of Notch signaling a post-transcriptional regulatory network dictates self-renewal or differentiation. The major self-renewal hub...
متن کامل